赵纪军

姓名: 赵纪军
性别:男

现任职称(职务):大连理工大学教授/博导,物理学院院长,三束材料改性教育部重点实验室主任,大连市政协委员(2018-);教育部长江学者。

研究方向及领域:主要从事低维凝聚态物理和计算材料学研究,在Springer出版社出版英文专著1部,在Science Advances, Progress in Materials Science, PRL, JACS, Nano Letters, ACS Nano, Advanced Materials, Advanced Functional Materials, Nano Energy等高水平学术期刊上发表SCI论文400余篇(影响因子>7的期刊50余篇),总引用超过12000次,最高单篇引用860次,H因子57,入选爱思唯尔中国高被引学者。研究成果多次被Science、Nature子刊等重要期刊上的实验验证,被Science Daily、Phys.Org、C&EN、IEEE Spectrum、Nanowerk、SCIlight等科技媒体亮点报道,近五年在国际会议作特邀报告20多次。

科研成果:
专著:
Zhao J, Liu L, Li F. Graphene Oxide: Physics and Applications[M]. Springer Berlin Heidelberg, 2015.
论文:
[1] Zhao J, Cheng K, Han N, et al. Growth control, interface behavior, band alignment, and potential device applications of 2D lateral heterostructures[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2017:e1353.
[2] S Zhou,CC Liu,J Zhao,et al. Monolayer group-III monochalcogenides by oxygen functionalization: a promising class of two-dimensional topological insulators.npj Quantum Materials.2018,3 :16
[3] 2D lateral heterostructures of group-III monochalcogenide: Potential photovoltaic applications.Applied Physics Letters.2018,112 :143902
[4] Guo Y, Zhou S, Bai Y, et al. Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers[J]. Applied Physics Letters, 2017, 110(16):323.
[5] Liu S, Wang Z, Zhou S, et al. Metal-Organic-Framework-Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution.[J]. Advanced Materials, 2017, 29(31).
[6] Liu Z, Liu X, Zhao J. Design of superhalogens using a core-shell structure model.[J]. Nanoscale, 2017, 9(47):18781.
[7] Li F, Zhao J. Atomic Sulfur Anchored on Silicene, Phosphorene and Borophene for Excellent Cycle Performance of Li-S Batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(49):42836.
[8] Wang P, Jiang X, Hu J, et al. Chemically Engineering Magnetic Anisotropy of 2D Metalloporphyrin[J]. Advanced Science, 2017, 4(10):1700019.
[9] Jiang X, Jiang Z, Zhao J. Self-assembly 2D zinc-phthalocyanine heterojunction: An ideal platform for high efficiency solar cell[J]. Applied Physics Letters, 2017, 111(25):253904.
[10] Sai L, Wu X, Gao N, et al. Boron clusters with 46, 48, and 50 atoms: competition among the core-shell, bilayer and quasi-planar structures.[J]. Nanoscale, 2017, 9(37).
[11] Belonoshko A B, Lukinov T, Fu J, et al. Stabilization of body-centred cubic iron under inner-core conditions[J]. Nature Geoscience, 2017, 10(4).
[12] Zhou S, Liu N, Wang Z, et al. Nitrogen-Doped Graphene on Transition Metal Substrates as Efficient Bifunctional Catalysts for Oxygen Reduction and Oxygen Evolution Reactions[J]. Acs Appl Mater Interfaces, 2017, 9(27):22578-22587.
[13] Yu G, Si Z, Bai Y, et al. Oxidation Resistance of Monolayer Group-IV Monochalcogenides [J]. Acs Applied Materials & Interfaces, 2017, 9(13).
[14] Han N, Liu H, Zhang J, et al. Atomistic understanding of the lateral growth of graphene from the edge of an h-BN domain: towards a sharp in-plane junction.[J]. Nanoscale, 2017, 9(10):3585.
[15] Zhang J, Xie W, Zhao J, et al. Band alignment of two-dimensional lateral heterostructures[J]. 2d Materials, 2016, 4.
[16] Zhifeng Liu, Junyan Liu, Jijun Zhao. YN 2, monolayer: Novel p-state Dirac half metal for high-speed spintronics[J]. 纳米研究(英文版), 2017, 10(6):1972-1979.
[17] Jiang X, Wu X, Zheng Z, et al. Ionic and superionic phases in ammonia dihydrate N H 3 · 2 H 2 O, under high pressure[J]. Phys.rev.b, 2017, 95(14).
[18] Qi Y, Han N, Li Y,et al. Strong Adlayer-Substrate Interactions "Break" the Patching Growth of h-BN onto Graphene on Re(0001).[J]. Acs Nano, 2017, 11(2).
[19] Wei G, Han N, Chao Y, et al. A Ternary Alloy Substrate to Synthesize Monolayer Graphene with Liquid Carbon Precursor[J]. Acs Nano, 2017, 11(2).
[20] Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation.Nano Energy.2017,31 :74
[21] Zhuang J, Gao N, Li Z, et al. Cooperative Electron-Phonon Coupling and Buckled Structure in Germanene on Au(111)[J]. Acs Nano, 2017, 11(4):3553.
[22] Huang Y, Zhu C, Zhao J, et al. A New Phase Diagram of Water under Negative Pressure: The Rise of The Lowest-Density Clathrate s-III[J]. Science Advances, 2016, 2(2):e1501010-e1501010.
[23] Du Y, Zhuang J, Wang J, et al. Quasi-freestanding epitaxial silicene on Ag(111) by oxygen intercalation:[J]. Science Advances, 2016, 2(7):e1600067-e1600067.
[24] Zhao J, Liu H, Yu Z, et al. Rise of silicene: A competitive 2D material[J]. Progress in Materials Science, 2016, 83:24-151.
[25] Li F, Jiang X, Zhao J, et al. Graphene oxide: A promising Nanomaterial for energy and environmental applications[J]. Nano Energy, 2015, 16:488-515.
[26] Zhou S, Zhao J. Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices[J]. Nanoscale, 2016, 8(16):8910.
[27] Zhao J, Shi R, Sai L, et al. Comprehensive genetic algorithm for ab initio global optimisation of clusters[J]. Molecular Simulation, 2016, 42(10):1-11.
[28] Zhang J, Xie W, Xu X, et al. Structural and Electronic Properties of Interfaces in Graphene and Hexagonal Boron Nitride Lateral Heterostructures[J]. Chemistry of Materials, 2016, 28(14).
[29] Liu H, Feng H, Du Y, et al. Point defects in epitaxial silicene on Ag(111) surface[J]. 2015, 3(2).
[30] Guo Y, Zhou S, Zhang J, et al. Atomic structures and electronic properties of phosphorene grain boundaries[J]. 2d Materials, 2016, 3(2):025008.
[31] Zhao J, Huang X, Jin P, et al. Magnetic properties of atomic clusters and endohedral metallofullerenes[J]. Coordination Chemistry Reviews, 2015, s 289-290(1):315-340.
[32] Li X, Schönecker S, Simon E, et al. Tensile strain-induced softening of iron at high temperature[J]. Scientific Reports, 2015, 5:16654.
[33] Lv J, Wang Y, Zhang L, et al. Stabilization of fullerene-like boron cages by transition metal encapsulation.[J]. Nanoscale, 2015, 7(23):10482-10489.
[34] Zhao J, Huang X, Shi R, et al. B28: the smallest all-boron cage from an ab initio global search.[J]. Nanoscale, 2015, 7(37):15086.
[35] Jiang X, Wang P, Zhao J. 2D covalent triazine framework: a new class of organic photocatalyst for water splitting[J]. Journal of Materials Chemistry A, 2015, 3(15):7750-7758.
[36] Lizhao, Feng, Jijun, et al. Curved carbon nanotubes: From unique geometries to novel properties and peculiar applications[J]. 纳米研究(英文版), 2014, 7(5):626-657.
[37] Du Y, Zhuang J, Liu H, et al. Tuning the Band Gap in Silicene by Oxidation[J]. Acs Nano, 2014, 8(10):10019.
[38] Huang X, Xu H G, Lu S, et al. Discovery of a silicon-based ferrimagnetic wheel structure in V(x)Si(12)(-) (x = 1-3) clusters: photoelectron spectroscopy and density functional theory investigation[J]. Nanoscale, 2014, 6(24):14617-14621.
[39] Li X, Stephan Sch?necker, Zhao J, et al. Ideal strength of random alloys from first-principles theory[J]. Physical Review B Condensed Matter, 2013, 87(21):291-295.
[40] Luo G, Liu L, Zhang J, et al. Hole defects and nitrogen doping in graphene: implication for supercapacitor applications.[J]. Acs Applied Materials & Interfaces, 2013, 5(21):11184.
[41] Jiang X, Nisar J, Pathak B, et al. Graphene oxide as a chemically tunable 2-D material for visible-light photocatalyst applications[J]. Journal of Catalysis, 2013, 299(2):204-209.
[42] Jiang X, Zhao J, Li Y L, et al. Tunable Assembly of sp3 Cross‐Linked 3D Graphene Monoliths: A First‐Principles Prediction[J]. Advanced Functional Materials, 2013, 23(47):5846-5853.
[43] Liu H, Gao J, Zhao J. Silicene on Substrates: A Way To Preserve or Tune Its Electronic Properties[J]. Journal of Physical Chemistry C, 2013, 117(20):10353-10359.
[44] Liu B, Bando Y, Liu L, et al. Solid-Solution Semiconductor Nanowires in Pseudobinary Systems[J]. Nano Letters, 2013, 13(1):85.
[45] Li F, Gao J, Zhang J, et al. Graphene oxide and lithium amidoborane: a new way to bridge chemical and physical approaches for hydrogen storage[J]. Journal of Materials Chemistry A, 2013, 1(27):8016-8022.
[46] Liu H, Gao J, Zhao J. From boron cluster to two-dimensional boron sheet on Cu(111) surface: growth mechanism and hole formation[J]. Scientific Reports, 2013, 3(11):3238.