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Abstract During the ongoing uplift and expansion of the southeastern margin of the Tibetan Plateau, the
front edge of the Sichuan‐Yunnan rhombic block (SYB) has experienced intense tectonic activity and frequent
seismicity. In this study, the fluid geochemistry in the primary active faults at the front edge of the SYB was
investigated, with the aim of understanding the tectonic activity and intersection relationship between the
Xiaojiang fault (XJF) and the Red River fault (RRF). Thermal spring water and gases exhibit a coupled spatial
distribution relationship; relatively high ion concentrations and 3He/4He ratios (Rc/Ra ratios of 0.21 to 0.62Ra)
are observed along the RRF, Qujiang fault (QJF), and Shiping‐Jianshui fault (SJF). Multidisciplinary research
results have indicated that mantle‐derived intrusion has been detected in the crust beneath the QJF and SJF. The
current tectonic activity in the front edge of the SYB remains intense, with compressive stresses shifting toward
the western side of the XJF and accumulating on the QJF and SJF. This has led to the development of fractures,
enhancing the water–rock interaction and deep‐derived gas degassing along the faults. The unmixing
characteristics of fluids at the intersection area of these two faults suggest the absence of conduits for fluid
migration between the faults. Owing to the lower gas 3He/4He ratios, lower shear strain rates, stable reservoir
temperature field, and extremely low historical seismicity in the Indo‐Chinese block, it is speculated that the
current movement of the XJF may not cut through the RRF and continue southward.

Plain Language Summary Fluids serve as carriers of information regarding deep activities, and are
known to migrate along active faults. Additionally, fluid geochemistry is highly sensitive to tectonic activity.
Given the intense tectonic activity and frequent seismicity experienced at the front edge of the Sichuan‐Yunnan
rhombic block (SYB), our study focuses on investigating the fluid geochemical characteristics of the primary
active faults in this region. Significant spatial differences in fluid chemistry are observed, particularly with
respect to relatively high ion concentrations and mantle He values along the Red River fault (RRF), Qujiang
fault (QJF), and Shiping‐Jianshui fault (SJF). Furthermore, the lack of conduits facilitating fluid migration
between the Xiaojiang (XJF) and RRF is evident from the distinct unmixed characteristics of the fluids.
Multidisciplinary results indicate the presence of mantle‐derived intrusion into the crust beneath the QJF and
SJF. The compressive stresses have shifted toward the western side of the XJF and are accumulated on the QJF
and SJF, resulting in the observed spatial variations in fluid geochemistry. Ultimately, these spatial differences
can be attributed to the unique intersection relationship between the XJF and RRF.

1. Introduction
Fluids are crucial carriers that exchange matter and transfer energy, reflecting unique geological, geochemical,
and hydrological information (Caracausi & Sulli, 2019; Kulongoski et al., 2013; Skelton et al., 2014). Due to their
ease of migration, fluids circulate through tectonic discontinuities, such as active faults or high‐permeability
cracks, until they are discharged to the surface (Faulkner et al., 2010; Gori & Barberio, 2022; Y. Li
et al., 2013). The presence of mantle‐derived volatiles in fluids, such as 3He and CO2, provides direct evidence of
the connection between the fault and the deep mantle (Z. Chen et al., 2020; McGibbon et al., 2018; M. Zhang
et al., 2021). Particularly for strike‐slip fault zones with large cutting depths, strong seismic activity, and high
permeability, mantle‐derived volatiles exhibit rapid migration. For example, high contributions of mantle‐derived
gas components have been observed in the Xianshuihe Fault in China (W. Liu et al., 2023; Tian et al., 2021), the
North Anatolian Fault in Turkey (Doğan et al., 2009), and the San Andreas Fault in the United States (Kulongoski
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et al., 2013; Yasin & Yüce, 2023). These deep fluids provide crucial information for understanding material
cycling and geodynamic processes along fault zones and for revealing stress accumulation and seismic activity
(Y. Li et al., 2023; Sano et al., 2014). Additionally, fluids are highly sensitive to changes in porosity. In tectonic
zones with seismic activity, stress accumulation, and active faulting ‐ especially at the fault intersection ‐ when the
degree of fracture development changes, the physical and chemical parameters of fluid can change quickly
(Hosono et al., 2020; Italiano et al., 2014; Moore et al., 2009; Ring et al., 2016). Fluids with different compo-
sitions can mix depending on the connectivity of the fault (Gómez Díaz & Mariño Arias, 2020; Shoedarto
et al., 2021; Williams et al., 2013). Therefore, thermal springs along fault zones have become one of the most
direct objects for studying the characteristics of fault activity, fault connectivity, and changes in the stress state.

As a result of the India‐Asia continental collision, the southeastern margin of the Tibet Plateau is one of the most
active tectonic deformation regions, with the occurrence of large‐scale plateau uplift, intracontinental defor-
mation, and material escaping clockwise around the eastern Himalayan syntaxis (Shi &Wang, 2017; Tapponnier
et al., 1982; Z. Xu et al., 2016). The Xiaojiang fault (XJF) and the Red River fault (RRF) are strike‐slip boundary
faults that play a significant role in the tectonic evolution and material escape process on the southeastern margin
of the Tibetan Plateau, forming the southeastern and southwestern boundaries of the Sichuan‐Yunnan rhombic
block (SYB), respectively (Xiang et al., 2000). The intersection area of the two faults is the forefront area of the
rotation and extrusion of the SYB (Tong et al., 2015), where subordinate faults are developed and earthquakes
occur frequently. Therefore, the front edge of the SYB is an active tectonic area.

During uplift and deformation in the southeastern margin of the Tibetan Plateau, the tectonic evolution, crustal
deformation, and seismic activity of the front edge of the SYB provide crucial constraints on various kinematic
models (Bao et al., 2015; Bischoff & Flesch, 2018; Flesch et al., 2001; Leloup et al., 1995). The intersection
relationship between the XJF and RRF is a fundamental issue when studying the deformation characteristics of
the front edge of the SYB. Thus, a crucial research area is whether the XJF crosscuts through the RRF and moves
southward, which would affect the current tectonic pattern and stress distribution in the southeastern margin of the
Tibetan Plateau (Y. Li et al., 2019; Z. Li et al., 2020; Michel et al., 2000; Schoenbohm et al., 2006; Z. Shen
et al., 2005; Y. Wang, Zhang, et al., 2014). The frequent occurrence of strong earthquakes along the eastern
boundary of the SYB has intensified the rotation of the block with ongoing southward compression, making it
necessary to further investigate the tectonic activity of the front edge of the SYB. Some studies on geothermal
fluid geochemistry in the area have focused on the hydrothermal circulation characteristics and volatile origin at
both a single fault and limited locations at the front edge of the SYB (He et al., 2023; C. Li et al., 2021; Shao
et al., 2022; Y. Wang, Zhao, et al., 2014; X. Zhou et al., 2020). Nevertheless, fluid geochemistry research on the
intersection relationship between the XJF and RRF is lacking, and the relationship between fluid geochemistry
and regional tectonic features in the front edge of SYB remains unclear.

In this study, the spatial distribution of fluid geochemistry, mixing and circulation evolution characteristics, and
the origin of deep fluids in and around the front edge of the SYB are investigated. Fluid geochemistry and
geophysics are used in conjunction to determine the relationship between current tectonic activities and fluid
geochemistry, revealing the current tectonic stress state.

2. Geological Setting
During the northward subduction of the Indian plate, a series of large‐scale NNW‐SN strike‐slip fault systems
developed on the southeastern edge of the Tibet Plateau (Yin & Harrison, 2000). The plateau is divided by these
complex large‐scale strike‐slip faults, giving rise to intracontinental microplates, with the SYB being one of the
most active blocks (Figure 1). The XJF, a near N‐S spreading strike‐slip fault, serves as the eastern boundary fault
of the SYB. It extends for about 400 km, ranging from the Qiaojia Basin in the north to the RRF in the south. It can
be divided into three sections: the northern section consists of a single fault, the middle section of Dongchuan‐
Huaning is divided into two east and west branches separated by a distance of ∼15 km, and the southern section is
further divided into multiple branches. Based on GPS observation data, the strike‐slip rate of the northern and
middle sections of the XJF is estimated to be 8–11 mm/a (Wen et al., 2011; G. Zheng et al., 2017). For the
southern section, some researchers have calculated a slip rate of 7–9 mm/a (Q. Li et al., 2019; Z. Li et al., 2019; Z.
Shen et al., 2005), which is not limited by the RRF. Wen et al. (2011), Y. Wang, Zhang, et al. (2014) have
suggested that, after passing through Tonghai and Jianshui, the sliding rate of the southern section of the XJF
decreases to∼4 mm/a. This rate reduction is attributed to the adjustment of strike‐slip and shortening deformation
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along subordinate faults, such as the Qujiang fault (QJF) and Shiping‐Jianshui fault (SJF) at the front edge of the
SYB. In addition, Z. Li et al. (2020) believe that the southern segment of the XJF undergoes diffuse deformation.
In terms of the fault spatial distribution, some researchers have suggested‐through geological studies‐that the
southern section of the XJF is less active, with a strike‐slip rate of 1.66 mm/a and does not intersect (He
et al., 1993; Song et al., 1998) or cut through the RRF (Schoenbohm et al., 2006). However, Han et al. (2017)
argue that the XJF cuts through the RRF to the south, which is supported by the tectonic models proposed by E.
Wang et al. (1998), Michel et al. (2000), and Z. Wu et al. (2015). Furthermore, seismological results (Dong
et al., 2023) reveal that the southern segment of the XJF is unaffected by the RRF and cuts through the RRF to the
south. Geomagnetic results (Ye et al., 2022) suggest that the XJF may not develop southward beyond the RRF.
There are certain discrepancies in the findings regarding the intersection relationship between the XJF and the
RRF, which is a fundamental issue that must be resolved in the study area.

The RRF is the northeastern boundary of the Indo‐Chinese block (ICB) and the southwestern boundary of the
SYB, with a distinct arcuate division in the geomorphology (Replumaz et al., 2001; Schoenbohm et al., 2006); the

Figure 1. (a) Simplified tectonic map of the southeastern Tibetan Plateau and adjacent regions. The Xiaojiang fault (XJF) and the Red River fault (RRF) are boundary
faults between the Sichuan‐Yunnan block (SYB), Indo‐China block (ICB), and South China block. Large earthquakes (M ≥ 6.0) have occurred since 1900, data for
which are obtained from the National Earthquakes Data Center (https://data.earthquake.cn/). The red box indicates the location of the study area. (b) Map showing
regional geology (modified from Ma et al. (2002)), fault distribution (quoted from Q. Deng et al. (2003)), and thermal spring sampling sites in the study area. QJF:
Qujiang fault; SJF: Shiping‐Jianshui fault. Numbered triangles, circles, and diamonds represent sampling sites along or near the XJF (including Qujiang fault and SJF)
and RRF, and within the ICB, respectively. The black and white borders of the numbered points represent the sampling points in this study and the ones from previous
studies (C. Li et al., 2021; Z. Li et al., 2022; L. Shen et al., 2007; Y. Wang, 2021; Y. Wang et al., 2020; K. Zhao et al., 2005; X. Zhou et al., 2020), respectively.

Geochemistry, Geophysics, Geosystems 10.1029/2023GC011431

SHAO ET AL. 3 of 17

 15252027, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

C
011431 by C

ochraneC
hina, W

iley O
nline L

ibrary on [26/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://data.earthquake.cn/


arcuate curvature is believed to result from the rotational extrusion of the SYB (Allen et al., 1984; E. Wang
et al., 1998; Wen et al., 2022). The RRF is divided into three segments in China. The southern section of the RRF,
Yuanjiang‐Hekou, in the present study, has a rightward slip rate of 0.9–1.4 mm/a and ∼1.6 mm/a reverse strike
due to SYB extrusion (Z. Li et al., 2020; Pan & Shen, 2017).

The XJF, as a section of the North‐south Seismic Belt in China, has historically experienced a number of large
earthquakes above M7.0, such as the Songming M8.0 earthquake in 1833 and the Huaning M7.0 earthquake in
1789 (Wen et al., 2008). Over the last 400 years, no earthquakes M7.0 or above have occurred in the southern
section of the XJF, and a comprehensive study of microseismicity by Y. Zhou et al. (2022) inferred that the XJF is
in the late post‐earthquake loading stage. The seismicity in the southern section of the RRF is relatively low, with
no earthquakesM6.0 or above have occurred historically, and the small seismic activity is weak. It is worth noting
that strong earthquakes have a tendency to move up the QJF and SJF. Since 1900, six earthquakes above M6.0
have cumulatively occurred on the QJF and SJF, with intensive small seismic activity. Consequently, the front
edge of the SYB exhibits high seismicity.

The study area has experienced a lengthy geological process, resulting in the exposure of Paleoproterozoic to
Cenozoic strata (Figure 1b). Within the SYB, the strata mainly consist of Mesoproterozoic phyllite, slate,
quartzite, sandstone, and greywacke. These formations are overlain by Ordovician sandstone, conglomerate,
Jurassic purplish‐red sandstone, shale, mudstone, and Paleocene sandstone. The stratigraphy is complex and
varied along the XJF, which exposes carbonate rock, sandstone, shale, mudstone, and phyllite. In addition, the
Permian Emeishan Basalt and Cretaceous Gejiu Granite are locally exposed. The RRF has been subjected to
strong tectonic deformation, owing to which gneiss, hornblende, syenite, marble, schist, hornblende, and other
high‐level Ailaoshan metamorphic rocks of the Paleoproterozoic have become exposed (C. Wang et al., 2021).
Additionally, the RRF has experienced multiple granite vein intrusions during the Neoproterozoic, Triassic‐
Jurassic, and Cenozoic (W. Chen et al., 2018).

3. Data and Methods
In this study, field investigations were conducted in July and November 2022, and a total of 22 thermal spring
water samples and seven bubbling gas samples were collected along the southern segment of the XJF, RRF, QJF,
and SJF (Figure 1b). The temperature, pH value, and electrical conductivity (EC) of hot springs were measured
using a portable multi‐parameter water quality analyzer (ProfiLine pH/Cond 3320 WTW, Germany) with
measurement accuracies of 0.1°C, 0.01, and 1 μS/cm, respectively. The WTW device was calibrated using
standard solutions before measurement. Prior to sampling, high‐density polyethylene (HDPE) bottles were
washed three times with deionized water and rinsed twice with thermal water. Each thermal water sample was
filtered using a 0.45 μm microporous membrane and collected in 100 mL HDPE bottles for major ions and SiO2
concentration analysis; 30 mL HDPE bottles were used for hydrogen and oxygen isotope analysis. The thermal
water samples for cation analysis required the addition of high‐purity nitric acid solution for acidification. Care
was taken to prevent the entry of air bubbles during water sample collection, and the samples were sealed and
stored under refrigerated conditions (4°C). To collect bubbling gas, a gas‐collection device based on the gas
drainage collection method was used; the details of the sampling procedures have previously been described by C.
Zhao et al. (2017). Gas samples for chemical composition analysis were collected in 500 mL aluminum foil gas
sample bags, while gas samples for helium and carbon isotope composition analysis were collected in 125 mL
sodium glass bottles. The glass bottles were filled with 25 mL of hot spring water and sealed with crimped rubber
stoppers prior to storage upside down.

The concentrations of major cations (Na+, K+, Ca2+, andMg2+) and anions (F− , Cl− , and SO4
2− ) of the hot spring

samples were determined using an ion chromatograph (Metrohm 883 Basic IC plus) with a detection limit of
0.01 mg/L. The HCO3

− and CO3
2− concentrations were analyzed using volumetric titration (HCl titration

method). The SiO2 concentration was determined by silicon molybdenum yellow spectrophotometry using a
visible spectrophotometer (T6, Xinyue). To ensure data accuracy, ion balance errors were checked for each
sample, and all samples exhibited ion balances within ±5%. The gas compositions were analyzed using a gas
chromatograph (GC) (Agilent 7890A) equipped with a liquid nitrogen cooling system. The precision of the gas
composition analysis (V/V) was as follows: He (5 ppm) and CO2 (0.5%). All of the aforementioned analysis
procedures were conducted at the Deep Fluid Laboratory of Yunnan Earthquake Agency, the details of which can
be found in a study by C. Zhao et al. (2017) and Q. Li et al. (2019).
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The hydrogen (2H) and oxygen (18O) isotope compositions in the hot spring samples were determined using a
high‐precision water isotope analyzer (Picarro L2140‐i, USA) at the Institute of Earthquake Forecasting, China
Earthquake Administration. The results were reported in international standard δ notation per mil (‰) relative to
Vienna Standard Mean Ocean Water. The measurement accuracies were δ18O ≤ 0.03‰ and δ2H ≤ 0.10‰,
respectively. The He‐C isotope composition of bubbling gas samples was analyzed at the Key Laboratory of
Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences in Lanzhou,
China. The 3He/4He and 4He/20Ne ratios were determined using a noble gas mass spectrometer (Nu Instruments,
UK) in the static mode, with a relative standard deviation of <5%. The atmospheric sample from Gaolan Hill in
the south of Lanzhou was used as the standard sample. The carbon isotopic values of CO2 and CH4 were analyzed
using a GC‐IRMS analytical system, which consists of an Agilent 6890 GC and a Thermo Fisher Delta Plus‐XP
stable isotope ratio mass spectrometer. The measurement error for the carbon isotopic ratios was ±0.3‰. The
carbon isotopic ratios are expressed by the conventional δ notation per mil (‰) relative to Vienna Pee Dee
Belemnite.

4. Results
4.1. Characteristics of Thermal Water

The ionic and isotopic compositions of thermal water in the study area are listed in Table S1 of Supporting
Information S1. The water temperatures range from 25.0 to 97.0°C, with higher temperatures observed along the
RRF. The pH values range from 6.33 to 9.98, indicating weak acidity to alkalinity of water. The EC values range
from 367 to 2,550 μS/cm, and the total dissolved solids (TDS) range from 182 to 2,961 mg/L, indicating
freshwater to slightly saline water. The concentrations of major cations, including Na+, K+, Ca2+, and Mg2+,
range from 2.37 to 329.75 mg/L, 1.02–24.12 mg/L, 1.28–650.78 mg/L, and 0.04–73.90 mg/L, respectively. The
concentrations of major anions, including HCO3

− , CO3
2− , Cl− , and SO4

2− , range from 56.37 to 928.73 mg/L,
9.90–56.35 mg/L, 0.15–67.30 mg/L, and 2.24–1742.19 mg/L, respectively. The SiO2 concentration ranges from
14.46 to 144.46 mg/L. It should be noted that the thermal waters along the XJF have lower temperature values,
EC, TDS, and SiO2 compared to those along the RRF and the ICB.

The classification results of the major‐ion composition of thermal water (Figure 2) show that the hydrochemical
types of most thermal waters are HCO3‐Ca·Mg type along the XJF, except in the southern end of XJF, being the
HCO3‐Na type. The cations exhibit no distinct cation‐dominant end elements along the RRF, and the hydro-
chemical types are classified as SO4‐Ca·Na, SO4·HCO3‐Ca·Na, and HCO3‐Ca·Na type; within the ICB, it is the
HCO3‐Na type. The hydrochemical types are primarily controlled by the interaction between water and the
surrounding aquifer rocks. In carbonate rock areas, the dissolution of limestone and dolomite forms HCO3‐Ca·Mg
type water, while the dissolution of evaporites can lead to the formation of SO4‐Ca·Mg and SO4·Cl‐Na type water.
In the metamorphic rock regions along the RRF, Na+ and HCO3

− could originate from the dissolution of sodium
feldspar and plagioclase, while Ca2+ can be derived from the dissolution of anorthite, mica, and marble. The high
concentration of SO4

2− is likely from gypsum dissolution. Furthermore, hydrothermal pyrite formed under the
control of ductile shear along the RRF (J. Deng et al., 2015), and SO4

2− could also result from the oxidation of
pyrite. HCO3‐Na type water is primarily distributed in sandstone and granite type areas (Figure 1). The primary
water‐rock interaction reactions can be summarized as follows:

CaCO3(calcite) + H2O + CO2→ 2HCO3 − + Ca2+ (1)

CaSO4 · 2H2O(gypsum)→ 2H2O + SO42− + Ca2+ (2)

2FeS2( pyrite) + 2H2O + 7O2→ 2FeSO4 + 2SO42− + 4H+ (3)

CaMg(CO3)2(dolomite) + 2H2O + 2CO2→ 4HCO3 − + Ca2+ +Mg2+ (4)

2NaAlSi3O8(albite) + 3H2O + 2CO2→ H4Al2Si2O9 + 4SiO2 + 2HCO3 − + 2Na+ (5)

CaO · 2Al2O3 · 4SiO2(anorthite) + 2CO2 + 5H2O→ 2H4Al2Si2O9 + 2HCO3 − + Ca2+ (6)

Geochemistry, Geophysics, Geosystems 10.1029/2023GC011431

SHAO ET AL. 5 of 17

 15252027, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

C
011431 by C

ochraneC
hina, W

iley O
nline L

ibrary on [26/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Hydrogen and oxygen stable isotopes are widely used to study groundwater circulation and trace water sources,
analyze water‐rock reactions, evaluate the evaporation process, determine water mixing, and estimate recharge
elevation (Pang et al., 2017; L. Zhang et al., 2021). The ranges of δ2H and δ18O values along the XJF are
− 96.81‰ to − 78.55‰ and − 12.96‰ to − 10.50‰, respectively. For the RRF, the ranges of δ2H and δ18O values
are − 74.99‰ to − 59.20‰ and − 10.84‰ to − 8.30‰, respectively. All of them fall along the Local Meteoric
Water Line (G. Li et al., 2016) and the Global Meteoric Water Line (Craig, 1961), indicating an insignificant shift
in δ2H and δ18O values (Figure 3). This suggests that the thermal spring waters are recharged by atmospheric
precipitation and may not have experienced intense or prolonged water‐rock interactions or slight effects of
exchange with CO2 (Joseph et al., 2011; Pang et al., 2017), resulting in insignificant δ

18O shift, which needs
further exploration. Additionally, a noticeable isotopic elevation effect is observed, with the δ2H and δ18O values
of thermal water becoming more negative as the sampling points increase in elevation.

4.2. Characteristics of Gases

The results of the 26 gas samples collected in the study area (Table S2 in Supporting Information S1) show that
the He concentration varies greatly, ranging from 33 to 2,575 ppm, and the 3He/4He (R/Ra) ratios range from 0.02
to 0.67Ra. The 4He/20Ne ratios range from 1.42 to 168.29, which is much higher than the atmospheric ratio
(0.318). The CO2 concentration is relatively low, ranging from 0.09% to 42.52%, and the δ13CCO2 values range
from − 24.39‰ to − 6.53‰.

5. Discussion
5.1. Spatial Variations and Evolution of Thermal Water Geochemistry

In non‐volcanic areas, groundwater generally undergoes a deep circulation through faults and is then heated by
deep surrounding rocks to form hot springs. The results of hydrogen and oxygen isotopes indicate that the thermal
water originates from atmospheric precipitation. The ion composition is primarily controlled by the lithology of

Figure 2. Piper diagram of thermal water from the study area (Piper, 1944).

Geochemistry, Geophysics, Geosystems 10.1029/2023GC011431

SHAO ET AL. 6 of 17

 15252027, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

C
011431 by C

ochraneC
hina, W

iley O
nline L

ibrary on [26/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the surrounding rocks, indicated by hydrochemical types. In this case, variations in the permeability of the fault
zone could play a crucial role in modifying the hydrochemical characteristics.

Based on the hydrochemical types and surrounding rock lithology at the front edge of the SYB, Ca2+, and HCO3
−

are the dominant ions in thermal water, and their concentrations are susceptible to water‐rock interactions. High
concentrations of Ca2+, HCO3

− , and TDS are observed along the RRF and the western side of the XJF, partic-
ularly in the QJF and SJF subordinate faults (Figures 7b–7d). The average concentrations of Ca2+, HCO3

− , and
TDS in the RRF reach remarkably high levels of 180.43, 405.55, and 1066.13 mg/L, respectively. In comparison,
the average concentrations of Ca2+, HCO3

− , and TDS in the QJF and SJF (108.36, 607.32, and 527.54 mg/L,
respectively) are significantly higher (∼2 times) than those in the XJF (50.90, 279.61, and 271.18 mg/L,
respectively). RRF is a large‐scale boundary fault, which provides pathways conducive to water circulation.
Previous studies have shown that increases in the ion concentration are a result of regional stress accumulations,
which promote the development of pore spaces within faults and enhance the intensity of water‐rock reactions
(Rosen et al., 2018; Woith et al., 2013). Research on surface permeability has revealed that tectonic settings exert
stronger control on the permeability of near‐surface (within ∼0.4 km) crystalline rocks compared to deeper re-
gions (Earnest & Boutt, 2014; Ranjram et al., 2015). Therefore, the higher ion concentrations observed along the
QJF and SJF indicate that these faults are subjected to more intense regional compression than the southern
segment of the XJF. Furthermore, despite the fact that RRF has high ion concentrations, the hydrochemical types
of the RRF exhibit a distinct transition toward the HCO3‐Ca·Mg type (Figure 2) on the western side of the XJF,
which could also be attributed to the compressive forces exerted on the front edge of the SYB, resulting in water
mixing.

As major conduits, active faults play a crucial role in the fluid migration, and previous studies have reported
numerous cases of water mixing in fault intersection zones (Gómez Díaz &Mariño Arias, 2020; Sabri et al., 2019;
Shoedarto et al., 2021). A clear distinction exists between the HCO3‐Na type water at the southern end of the XJF
and the SO4·HCO3‐Ca·Na type water along the RRF in the Piper diagram rhombic area (Figure 2), and no mixing
trend is observed. Moreover, conservative elements (Cl− , B− , Sr2+) are widely used in groundwater mixing
studies because of the accumulation of concentration during water‐rock reactions and leaching and are not easily
attenuated by precipitation or exchange (Stefánsson et al., 2019; T. Zheng et al., 2023). The relatively low Cl−

Figure 3. Plot of δ2H versus δ18O for thermal water and local meteoric water obtained from the study area. GMWL: the
Global Meteoric Water Line, δ2H = 8δ18O + 10 (Craig, 1961); LMWL: the Local Meteoric Water Line (LMWL),
δ2H = 8.16δ18O + 8.7, the LMWL and meteoric water in Mengzi City are according to G. Li et al. (2016) in this study.
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concentration indicates that the thermal water in our study area emerges at the surface after atmospheric pre-
cipitation circulating through fractures, without being mixed with high Cl− water sources, such as deep brine or
ancient seawater. The δ2H‐δ18O values are less influenced by factors such as H2S exchange, seawater mixing, or
evaporation in non‐volcanic regions with inland humidity. Furthermore, δ2H values are insignificantly affected
during water‐rock reactions, except at very high rock‐water ratios. Consequently, the Cl− and δ2H relationship
can effectively indicate the water mixing process. As the Cl− increases, a gradual difference in δ2H values is
observed, the thermal water along the XJF exhibits a trend of enhanced water‐rock interactions, and the thermal
water on the RRF could be a combination of both water‐rock interactions and surface leaching water (Figure 4).
Based on the aforementioned results, the groundwater at the intersection of the XJF and the RRF exhibits distinct
evolutionary trends, and there is no evidence of mixing, which proves that there is no interconnected pathway
between the XJF and the RRF.

Most thermal water in the Na‐K‐Mg ternary diagram (Figure 5) is plotted in the immature water zone with high
Mg2+ concentrations, which indicates that the thermal water is mixed with varying proportions of shallow cold
water. The cold water mixing percentages for thermal water from the XJF range from 60% to 93% and 64%–92%
for thermal water from the RRF (Table S1 in Supporting Information S1) estimated by the dissolved silica versus
enthalpy model (Figure S1 in Supporting Information S1) (Fournier & Truesdell, 1974; Truesdell & Four-
nier, 1977). Similarly, thermal water at the same isotherm could indicate the mixing of deep source geothermal
fluids and shallow groundwater at the same fault, and these deep source reservoir temperatures are ∼160°C in the
XJF and∼240°C in the RRF. Considering dilution by shallow cold water mixing, the cation system of the thermal
water is in a non‐equilibrium state; therefore, the results obtained from cation ratio thermometers may not be
accurate enough. The quartz geothermometer (Fournier, 1977) provides the lowest estimate of reservoir tem-
perature and the dissolved silica versus enthalpy model provides the reservoir temperature before cold water
mixing (Table S1 in Supporting Information S1), and the reservoir temperature field was derived from a Kriging
interpolation fit (Figure 7d). Although the contribution of radiogenic heat from granitic sources cannot be
completely disregarded, the reservoir temperatures in ICB exhibit generally high and relatively small variations,
indicating a stable reservoir temperature field in ICB. On the other hand, the distributions of reservoir temper-
atures in the front of the SYB are highly uneven, with large variations and distinct transitional gradients.

5.2. Origins and Spatial Distributions of Gas Geochemistry

Helium, a noble gas, can serve as an indicator of the origins of deep fluids, specifically in distinguishing between
crustal and mantle‐derived fluids. This is possible due to the substantial differences in 3He/4He ratios observed in
various reservoirs, such as the mantle (∼8 Ra), crust (∼0.02 Ra), and atmosphere (1 Ra) (Sano & Wakita, 1985).
In addition to degassing from the primordial mantle, the higher 3He/4He ratios can be influenced by various
factors. For instance, 3He can originate from nuclear bomb decay, the decay of Li in the crust, and atmospheric
contamination (Yokoyama et al., 1999). However, apart from atmospheric contamination during sampling and
testing, the contribution from these sources of decay is overshadowed by the dominant role of mantle‐derived He
(Bai et al., 2023; S. Xu et al., 2022). The ternary mixing plot of mantle, crust, and air (Figure 6a) shows that gases
with lower 4He/20Ne ratios are contaminated by approximately 20% air, which interferes with the actual 3He/4He
ratios. Additionally, the 3He/4He ratios can also be influenced by the presence of 4He produced from the decay of
U and Th in the crust. Therefore, air correction is applied to the gases using the 4He/20Ne ratios, and gases with
3He/4He (Rc/Ra) > 0.2 Ra, representing∼2% mantle He contribution, are considered to have a reliable mantle He
contribution.

The 3He/4He (Rc/Ra) ratios in the study area range from 0.03 to 0.59 Ra (Table S2 in Supporting Information S1).
A clear classification phenomenon can be observed: thermal springs with 3He/4He (Rc/Ra) ratios exceeding 0.2
Ra are mainly distributed along the RRF, QJF, and SJF (Figures 6a and 7a), providing evidence for the mantle‐
derived helium contribution to these fault systems. In contrast, the gases along the southern segment of the XJF
and in the IBC exhibit 3He/4He ratios below 0.2 Ra, indicating a predominant crustal degassing origin. Active
faults serve as the main pathways for deep degassing in the Earth (Caracausi & Sulli, 2019; Chang et al., 2021; Y.
Li et al., 2023), and the enrichment of 3He/4He is direct evidence of deep connectivity and material exchange
along faults. Consequently, the observed spatial distribution variations in 3He/4He ratios suggest that the RRF,
QJF, and SJF either extend into the mantle or experience the upwelling of mantle‐derived materials within the
crust. Based on previous geophysical and geochemical observations(Sun et al., 2014; M. Xu et al., 2006; X. Zhou
et al., 2020), the higher 3He/4He ratios along the RRF suggest that it is a deep fault that cuts through the crust. The
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magnetotelluric results (Figure 7a) indicate the possible presence of deep material upwelling within the crust on
the western side of the XJF, which (Ye et al., 2022) speculated to be partially melted hydrous fluids from the
mantle source. These confirm the results of higher mantle He contributions detected along the QJF and SJF. In
contrast, the lower 3He/4He ratios may be attributed to the lack of active faults conducive to deep degassing. The

Figure 4. Relationships between δ2H and Cl− of thermal water from the study area (modified from T. Zheng et al. (2023)).
The yellow zone and blue zone reflect thermal water from the intersection area of Xiaojiang fault and Red River fault.

Figure 5. Na‐K‐Mg triangular diagram of thermal water samples in the study area (Giggenbach, 1988).
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convergence zone of large boundary faults promotes fracture development and enhances deep degassing pro-
cesses (W. Liu et al., 2023; Yuce et al., 2017). However, the southern end of the XJF has lower 3He/4He ratios,
with a value of only 0.06 for gas at No. 28. Previous studies have found a high‐velocity body in the middle‐lower
crust at the intersection of the XJF and the RRF (S. Liu et al., 2022; Y. Xu et al., 2013; Yang et al., 2020), which
hinders the southward movement of the XJF. Therefore, the southern end of the XJF may not have extended deep
into the mantle or connected with the RRF that cuts through the crust.

CO2 is considered to be the main carrier for He migration in the crust (Lee et al., 2019; W. Liu et al., 2023). The
sources of CO2 include mantle degassing, carbonate dissolution, metamorphic decarbonization, organic matter
decomposition, and soil respiration (Ramnarine et al., 2012; S. Xu et al., 2022); each of these sources has specific
ranges of isotopic compositions. The ratios of 3He/4He (Rc/Ra) versus δ13CCO2 (Figure 6b) show that crustal‐
sourced gases have δ13CCO2 values ranging from − 22.07 to − 8.12‰, indicating a potential mixture of multi-
ple sources. Gases with mantle‐derived He contributions are constrained to a narrow range of 3He/4He ratios,
while the δ13CCO2 values vary widely, from − 19.93‰ to − 6.53‰. The gases' δ13CCO2 values from the RRF
range from − 16.16 to − 6.53‰, which are primarily of mantle origin (− 6.5‰±2.5‰ according to Sano and
Marty (1995)), with some negative δ13CCO2 values being related to gas mixing or CO2 consumption through
calcite precipitation (W. Liu et al., 2023; S. Xu et al., 2022). The gases' δ13CCO2 values from the QJF and SJF
range from − 19.93‰ to − 16.30‰, indicating the potential presence of shallow biogenic CO2 (− 25‰±3‰)
(Robinson & Scrimgeour, 1995) mixed in. For gases with mantle‐derived He contributions exceeding 2%, there is
a transition frommantle‐derived CO2 to shallow biogenic CO2 from the RRF to the QJF and SJF (Figure 6b). This
indicates that the contribution of shallow gas components to the gases at the front edge of the SYB is greater than
those in the RRF and ICB.

5.3. Tectonic Features Revealed by Fluid Geochemistry

The tectonic evolution of the SYB on the southeastern margin of the Tibetan Plateau is influenced by the Indian‐
Asia continental collision and subduction, block extrusion, and material rotational escape. The limited movement
of the front edge of the SYB has resulted in spatial variations in the fluid distribution. The interconnection be-
tween the deep gas emission and the geochemical characteristics of shallow thermal water provides insight into
the current tectonic pattern of the front edge of the SYB.

The high shear strain observed along the XJF does not extend to the RRF, but rather weakens and deflects
southwestward from the southern segment of the XJF (Figure 7b). It then transitions into crustal contraction and
extension, forming a complex dilatational strain rate (Y. Li et al., 2019). The XJF experiences a sudden decrease

Figure 6. Correlation among isotope values of bubbling gas samples in the study area. (a) 3He/4He (R/Ra) versus 4He/20Ne, (R/Ra)Air = 1.0 Ra, (
4He/20Ne)Air = 0.318,

(R/Ra)Mantle= 8.0 Ra, (
4He/20Ne)Mantle= 1,000, (R/Ra)Crust= 0.02 Ra, (

4He/20Ne)Crust= 1,000 (Sano &Wakita, 1985); (b) δ
13CCO2 versus

3He/4He (Rc/Ra) (modified
from Tian et al. (2021)). The circle with a black line represents the data from this study. The circle without a black line represents data from previous studies.
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when passing through the QJF, leading to right‐lateral strike‐slip and thrust along the QJF and the SJF (Z. Li
et al., 2020; Wen et al., 2011). In terms of geological and geomorphological features, no significant displacements
were found along the RRF that were cut through and dislocated by the XJF. Instead, the QJF, SJF, and RRF
exhibit a geometric pattern of southwestward bending (Schoenbohm et al., 2006; Wen et al., 2022). The spatial
variations in 3He/4He ratios can be explained by differences in fault‐dependent permeability, extension, and
seismic magnitude (Caracausi et al., 2022; W. Liu et al., 2023). Herein, the high hydrochemical ion concentra-
tions and the presence of deep‐derived gases along the RRF suggest that it still retains the features and functions as
a block‐boundary fault in the front edge of the SYB. The transition of hydrochemical types in the western section
of the RRF can be interpreted as a result of the restricted movement of the SYB. The QJF and SJF exhibit
distinctly higher concentrations of Ca2+, HCO3

− , and TDS, as well as mantle‐derived He contributions, compared
to the XJF. This suggests that these subordinate faults preferentially absorb the southward movement and energy
from the XJF. Intense seismic activity, stress accumulation, compression, and fracturing lead to the opening of
deep channels and an accelerated rate of water‐rock reactions. Furthermore, the boundary effect of the southern

Figure 7. Spatial distribution of ion concentrations, total dissolved solids (TDS) values, 3He/4He (Rc/Ra) ratios, and
earthquakes in the study area. (a) 3He/4He (Rc/Ra) ratios and resistivity; (b) HCO3

− concentrations and maximum shear
strain rate; (c) Ca2+ concentrations and dilatational strain rate; (d) TDS values, earthquakes, and reservoir temperature. Shear
strain rate and dilatational strain rate data are according to Z. Li et al. (2020), and resistivity data are according to Yu
et al. (2020). Earthquakes (M ≥ 5.0) occurring since 1900 are from the National Earthquakes Data Center (https://data.
earthquake.cn/).
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section of the XJF is seen to be weakening. Spatial discrepancies in the reservoir temperature are related to stress
levels, crustal thickness, fracture and cutting depth of faults, the activity level of faults, and the temperature of
deep heat sources (Su et al., 2022). The spatial correlation between the dilatational strain rate and the reservoir
temperature field (Figures 7c and 7d) further supports the strong relationship between the hydrochemistry of
thermal water and regional strain.

In addition, compressive shear stresses are more favorable for faults to extend into depth and increase fault
permeability, thus accelerating the release of mantle He (Faulkner et al., 2010; M. Zhang et al., 2021). Strong gas
emissions have been observed along strike‐slip and thrust faults in certain tectonic compression environments
(Doğan et al., 2009; Klemperer et al., 2013). Beneath the QJF and SJF, thrust strike‐slip faults exhibit lower P‐
wave and S‐wave velocities (Bao et al., 2015; Yang et al., 2020), high‐conductivity and low‐resistivity bodies in
the lower crust (Figure 7a), with high surface heat flow values (Jiang et al., 2019). The shear strain rates, seis-
micity, and deep fracture deformation in this area are more intense than those in other areas, and the development
of new fractures within the faults may facilitate the transportation of mantle‐derived gas from the trap. Therefore,
the release of mantle‐derived He along the QJF and SJF is the result of a combination of localized stress accu-
mulation at the front edge of the SYB and upwelling of fluids from the depths (Figure 8). Under intense
compression, new fractures or the reopening of pre‐existing fractures can occur, leading to the further fracturing
of shallow sedimentary layers (Z. Chen et al., 2022; Y. Li et al., 2023). The development of shallow fractures
provides additional pathways for gas circulation, accelerating the cycling of gases. Thus, the detection of shallow
biogenic CO2 mixing along the QJF and SJF further confirms the enhanced compression activity.

Based on these findings, it can be inferred that the RRF still exhibits strong boundary effects, while the boundary
effects may weaken along the southern segment of the XJF, with compressional stress transferring to the QJF and
SJF subordinate faults in the front edge of the SYB. Further, this study shows that the XJF and RRF remain
unconnected and have not formed pathways conducive to fluid transport. Therefore, it is speculated that the XJF
does not cut through the RRF to the south, and its southward movement is restricted, leading to intense tectonic
activity along the QJF and SJF subordinate faults at the front edge of the SYB. Fewer thermal springs with
bubbling gas, lower gas 3He/4He ratios, lower shear strain rates, stable reservoir temperature fields, and extremely
low historical seismicity in the ICB (Figure 7) indicate that the ICB is a stable block unaffected by extrusion,
which is another reason for the XJF failing to cut through the RRF and moving southward (Figure 8).

Figure 8. A schematic model showing 3D sketches of the tectonic features of the front edge of the Sichuan‐Yunnan rhombic block (SYB). The resistivity data are
according to Yu et al. (2020); Crustal thicknesses are according to T. Wu et al. (2016); the LAB is based on Hu et al. (2015); and the fault zones are according to Y.
Wang, Zhang, et al. (2014) and Wen et al. (2022). GPS velocity field from Z. Li et al. (2020), with 1σ confidence level; and rotation rate of the SYB from Z .Shen
et al. (2005).
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Although stress accumulation occurs, the slip rate of subordinate faults on the west side of the XJF is lower.
Nevertheless, the existence of ductile crust beneath these faults, enhanced fluid activity, and high pore pressures
are more sensitive to shear stresses and slip rates (Lu et al., 2022). Deep‐seated fluids can reduce the effective
shear stress on faults, lower the mechanical strength of rocks, and decrease the friction between faults (W. Liu
et al., 2023; Sano et al., 2014). The inhomogeneity of the reservoir temperature field and the upwelling of deep
fluids possibly play an important role in the high frequency of seismic activity (W. Liu et al., 2022; Shao
et al., 2022; Y.Wang et al., 2018). Therefore, deep fluids also provide conditions for the generation and triggering
of earthquakes. In comparison, the ICB seems to be unaffected by this extrusion, and the future seismic hazard is
relatively weaker than the front edge of the SYB. Furthermore, the higher peak ground acceleration in the front
edge of the SYB, reaching 0.3 g along the QJF and SJF (Gao, 2015), the higher standards of seismic defense for
buildings and continuous fluid geochemistry monitoring should be required.

6. Conclusions
In this study, the fluid geochemistry, deep geophysical imaging, and crustal deformation features along the
principal active faults in the front edge of the SYB are investigated. Based on the results of this analysis, the
following conclusions can be drawn:

1. Thermal spring water and gas exhibit a coupled spatial distribution relationship. Relatively high ion con-
centrations and 3He/4He ratios (Rc/Ra ratios of 0.21–0.62 Ra) are observed along the RRF, QJF, and SJF.
Multidisciplinary results suggest that the RRF cuts through the crust, while there is a mantle‐derived intrusion
into the crust beneath the QJF and SJF. These active faults serve as pathways for mantle‐derived fluid flow.

2. The spatial variations in the fluid distribution, tectonic activity, and surface deformation characteristics
collectively reveal that the strong compressive stress shifts toward the western side of the XJF in the front edge
of the SYB, accumulated on the QJF and SJF. The enhanced water‐rock interactions and deep‐derived gas
degassing can be interpreted as the intense compressional deformation along these strike‐slip and thrust faults,
leading to the development of fractures.

3. The boundary effect of the RRF is stronger than that of the southern segment of the XJF in terms of the in-
tensity of fluid geochemistry. The unmixing characteristics of fluids at the intersection of these two faults
suggest the absence of conduits conducive to fluid migration between the faults. Combining the lower gas Rc/
Ra ratios, lower shear strain rates, stable reservoir temperature field, and extremely low historical seismicity in
the ICB, it is speculated that the current movement of the XJF may not cut through the RRF and continue
southward. The future seismic activity at the front edge of the SYB still deserves attention, and the continuous
monitoring of fluid geochemistry should be improved.

Data Availability Statement
The data of thermal spring water and gas chemical constituents (Shao, 2024) can be found at Mendeley Data, V1
(https://doi.org/10.17632/kxt9df6ngg.1).
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